13 research outputs found

    Procedural-Reasoning Architecture for Applied Behavior Analysis-based Instructions

    Get PDF
    Autism Spectrum Disorder (ASD) is a complex developmental disability affecting as many as 1 in every 88 children. While there is no known cure for ASD, there are known behavioral and developmental interventions, based on demonstrated efficacy, that have become the predominant treatments for improving social, adaptive, and behavioral functions in children. Applied Behavioral Analysis (ABA)-based early childhood interventions are evidence based, efficacious therapies for autism that are widely recognized as effective approaches to remediation of the symptoms of ASD. They are, however, labor intensive and consequently often inaccessible at the recommended levels. Recent advancements in socially assistive robotics and applications of virtual intelligent agents have shown that children with ASD accept intelligent agents as effective and often preferred substitutes for human therapists. This research is nascent and highly experimental with no unifying, interdisciplinary, and integral approach to development of intelligent agents based therapies, especially not in the area of behavioral interventions. Motivated by the absence of the unifying framework, we developed a conceptual procedural-reasoning agent architecture (PRA-ABA) that, we propose, could serve as a foundation for ABA-based assistive technologies involving virtual, mixed or embodied agents, including robots. This architecture and related research presented in this disser- tation encompass two main areas: (a) knowledge representation and computational model of the behavioral aspects of ABA as applicable to autism intervention practices, and (b) abstract architecture for multi-modal, agent-mediated implementation of these practices

    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources

    Get PDF
    Apache Calcite is a foundational software framework that provides query processing, optimization, and query language support to many popular open-source data processing systems such as Apache Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite's architecture consists of a modular and extensible query optimizer with hundreds of built-in optimization rules, a query processor capable of processing a variety of query languages, an adapter architecture designed for extensibility, and support for heterogeneous data models and stores (relational, semi-structured, streaming, and geospatial). This flexible, embeddable, and extensible architecture is what makes Calcite an attractive choice for adoption in big-data frameworks. It is an active project that continues to introduce support for the new types of data sources, query languages, and approaches to query processing and optimization.Comment: SIGMOD'1

    Tempura

    No full text

    The Heidelberg Laureate Forum on the moving frontier between mathematics and computer science

    No full text
    Young and early-career researchers at the 2016 Heidelberg Laureate Forum discuss how the frontier between mathematics and computer science is shifting, what the future promises, and the implications the frontier's shape and dynamics will have on both fields

    cpgQA: A Benchmark Dataset for Machine Reading Comprehension Tasks on Clinical Practice Guidelines and a Case Study Using Transfer Learning

    No full text
    Biomedical machine reading comprehension (bio-MRC), a crucial task in natural language processing, is a vital application of a computer-assisted clinical decision support system. It can help clinicians extract critical information effortlessly for clinical decision-making by comprehending and answering questions from biomedical text data. While recent advances in bio-MRC consider text data from resources such as clinical notes and scholarly articles, the clinical practice guidelines (CPGs) are still unexplored in this regard. CPGs are a pivotal component of clinical decision-making at the point of care as they provide recommendations for patient care based on the most up-to-date information available. Although CPGs are inherently terse compared to a multitude of articles, often, clinicians find them lengthy and complicated to use. In this paper, we define a new problem domain – bio-MRC on CPGs – where the ultimate goal is to assist clinicians in efficiently interpreting the clinical practice guidelines using MRC systems. To that end, we develop a manually annotated and subject-matter expert-validated benchmark dataset for the bio-MRC task on CPGs – cpgQA. This dataset aims to evaluate intelligent systems performing MRC tasks on CPGs. Hence, we employ the state-of-the-art MRC models to present a case study illustrating an extensive evaluation of the proposed dataset. We address the problem of lack of training data in this newly defined domain by applying transfer learning. The results show that while the current state-of-the-art models perform well with 78% exact match scores on the dataset, there is still room for improvement, warranting further research on this problem domain. We release the dataset at https://github.com/mmahbub/cpgQA
    corecore